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Received 19 March 1990, in final form 30 May 1990 

Abstract. The presence of an external electromagnetic wave leads to an important change 
on the Coulomb interaction between two quantum charged particles and gives rise to 
long-range radiative forces. These effects result in the modification of Rutherford scattering. 

1. Introduction 

Recently it was found that the induced oscillations of the small particles under the 
action of the external fields result in the appearance of the long-range radiative forces 
[ 1-51, These time-averaged forces are proportional to the square of the field amplitude 
and inversely proportional to the distance between the particles. The radiative forces 
acting between gas bubbles and between the solid corpuscles in a compressible liquid 
in a sound field were considered in [ 1-41. The radiative interaction of charged particles 
in an external electromagnetic wave was investigated in [ 51. The distance dependence 
of these forces is the same in all cases [l-51. The small particles are considered to be 
classical in these papers. From the standpoint of the classical theory the radiative 
forces are caused by the secondary radiation of the particles. The external fields result 
in the induced oscillations of the particles. The oscillating particles radiate the secondary 
waves which create the radiative forces. Such possible interdisciplinary transfer between 
acoustics and classical electrodynamics is based on the formal analogy of the corre- 
sponding equations. It is not new in physics. To cite, for example, the articles [6-81. 
It is also clear that the term particle itself has not the same significance in fluid 
mechanics and in electromagnetic theory (recently many works have investigated 
extended models of the electron [9-141). 

The purpose of our paper is to show that the quantum theory leads to analogous 
results. We shall obtain this for the example of quantum charges placed in the field 
of a plane monochromatic electromagnetic wave. The interactions between them are 
activated by the exchange of photons. 

2. The interaction of the quantum charges in an electromagnetic wave 

In the following we shall use the analytical solution of Schrodinger equation for the 
relativistic lone electron in a plane electromagnetic wave which was obtained by Volkov 
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[15]  ( h = c = l )  

where 

Here k = ( w ,  k )  and A = (0, A cos(kx)) are the wave 4-vector and the 4-vector of 
the external electromagnetic wave respectively (we suppose that (kA) = -(k.A) = 0); 
x = (t,  r )  is the 4-vector of the electron; to simplify the formulae the indexing is omitted 
in expressions (1) and (2) and the scalar product of vectors a and b is ( a b )  = aobo - a .  b ;  
U ( p )  is a constant bispinor. The equation for U ( p )  is of the form 

The square of the energy-momentum vector is 
p2  = miff  = m 2  + ie2A2 (4) 

where me, is the effective mass of the electron [15]. We shall suppose that UU = 2m. 
Then the condition of normalization for the functions (1) is 

1 1 
- 5 $,*,(x)CCr,(x) d3r = - 5 $p(x) y o ~ , , ( x )  d3r = S3( p -p‘). ( 5 )  
(27r)3 (27rI3 

This condition is of exactly the same type as that for free plane waves. 
For the current density one obtains 

1 ek’ e2A2 
j ”  = Gpy’+p =- (p’ - eA’ -- ( p - A )  COS kx+- k” C O S ~ ~ X  

Po kP 4(kP) - 
The time average j ”  = p”/po.  

Thus the solutions (1) are plane waves modulated by an external electromagnetic 
wave. 

In order to describe the interaction of the charges in an electromagnetic wave we 
shall consider the Feynman diagram which is shown in figure 1. 

This diagram corresponds to the exchange of a virtual photon between the particles 
1 and 2. We suppose that these Fermi particles are different. The corresponding matrix 
element is [ 151 

S = ie,e2 d4x d4x‘ DFY(x - X ‘ ) & ~ ~ ( X )  y”+pl(x)$ppi(x’) y”4p2(x‘) ( 6 )  I 
where 

is the photon propagator. 

Figure 1. The elastic scattering of charged particles 
2 ’  ”i’ 2 in the presence of an external electromagnetic wave. 
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Let us use the solutions (1) as the wavefunctions in (6) and consider the non- 

The matrix element takes the form 
relativistic limit. Then the scalar products of the type (kp) are equal to kp = umeff.  

K(kx, kx', PI 9 P i ,  P 2 ,  Pi) 
q 2 + i e  

x exp[ -iq(x - x') - i (  p ,  -p;)x - i( p 2  -p;)x'] 

where 

- - [ I--  A*(  1 e2 + - e ; )  A'( e, e2 +- -cos kx--cos kx' 
4 mL,  4, 2 %r, m2,tr 

(9) 
ie,A.(p,  - p i )  sin kx ie2A.(p2-pi)  sin kx' 

"2df 

+ 

Let us expand the function K in a Fourier series. For example one of terms in (9) 
can be represented as 

exp( - i e , ( A * p )  sin kx = a,+ a ,  sin kx + a, sin 2 k + .  . . 
wmld, ) 

where p = p i  - p ,  . 
The main member is [16] 

where J , ( x )  is the Bessel function. It follows from (1 1) that a, is the time average of 
the exponent (10). 

We shall extract from the function K that part which is the function of the difference 
(x - x'). This result can be obtained by means of the mathematical operation 

K o ( k ( x - X ' ) , P , , P j , P 2 , P ; ) = ~  2rr dcpK(kx+cp, kx'+cp,P,,Pl,P*,P~). (12) 

Let us calculate the expression (12) with an accuracy to the second order in the 
field amplitude to illustrate the operation. Then 

After the change of variables X = (x  + x')/2. 6 = x - x'  and calculation of matrix 

(14) 

element (8) with the modified function (13), one obtains 

s = - i ( 2 ~ ) ~ 8 ~ ( p ,  + p 2 - p I  - p i )  ~ ( p )  

where 
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The function V ( p )  can be treated as the Fourier image of the static potential of 
the two-particle interaction [15,17]. If we go over to the usual space coordinates then 

It can be seen from (16) that the presence of the electromagnetic wave leads to the 
important change in the Coulomb interaction between the charged particles and results 
in the appearance of the long-range forces (last term in (16)) which decrease inversely 
proportional to the distance between the particles. We can say that the expression (16) 
is independent of the Dirac constant h. Hence, the indicated corrections to the Coulomb 
interaction are of a classical character. This conclusion is in agreement with [ 1-51. 

These results can be produced by other means. Let us consider the usual Lagrangian 
of quantum electrodynamics, including the classical electromagnetic wave 

2’,nt= e ~ ( x ) ~ ~ ~ ~ ( x ) ( A , ( x ) + A ~ ” ( x ) )  d3r. I 
In order to take into account the influence of the external field we shall study the 

interaction with an accuracy to e4. Then the Feynman diagrams which are shown in 
figure 2 result in the such a correction of the Coulomb potential as the expression (15). 

Figure 2. The Feynman diagrams of order e‘ which result in the modification of the 
Coulomb potential. 
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These diagrams correspond to the processes which describe the successive absorp- 
tion and emission (or otherwise) of an external field quantum by the system of two 
electrons. Thus the combined energy-momentum vector of the electrons is preserved. 
These processes are presented by the factor a4( p 1  + p 2  - p i  - p i )  in matrix element (8). 
As far as other contributions in the S-matrix are concerned (for example the terms of 
order e3 are important in scattering processes also) they lead to the appearance of the 
factors 6 4 ( p I + p 2 - p { - p i * k ) ,  S 4 ( p l + p 2 - p i - p ; * 2 k ) .  . . . These processes corre- 
spond to the absorption or  emission of external field quantums by the system of two 
electrons. Therefore the combined energy-momentum vector of the electrons is not 
preserved. 

In short we take an  interest only in the processes which lead to the preservation 
of the combined energy-momentum of the two particles, i.e. we are looking at the 
problem only in the elastic channel. 

Even though we are dealing with terms of the order e4 in this paper, we exclude 
two-photon exchange process between the two charges [ 181. This process requires 
special consideration. 

After simple but unwieldy transformations the accurate expression for the two- 
particle potential (which is defined from calculation of matrix element (8) with the 
time-averaged function k,)  can be written as follows: 

where 

A 
~ ( 7 ,  r, cp) = r - -  R(r ,  r )  sin cp 

w 

The resulting expression is very complicated. That is why we shall consider only 
one extreme m2+ CO. This case corresponds for example to the hydrogen-like atom in 
a plane electromagnetic wave. In this limit 

We suppose that 

Then the potential takes the form 

i.e. transforms to the Kramers-Henneberger potential (see, for example, [ 191 and 
references therein). 
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3. Rutherford scattering in the presence of an electromagnetic wave 

Let us calculate the elastic scattering of an electron by the nucleus in the presence of 
an external wave. The interaction of an electron with the nucleus is determined by the 
effective potential (19). If we use the integral representation of the Bessel function 
(1 1) then in the first approximation of perturbation theory for the differential cross- 
section one obtains 

where p =PI - p l ,  0 is the scattering angle, E = Aw is the amplitude of the electric 
intensity vector, duR is the usual differential cross-section (when E = 0) which is given 
by the Rutherford formula [ 171. The modification is the appearance of the factor Jg(Z),  
where Z = e , ( p . E ) / ( m , w * ) .  Let us suppose that p J E  and ( p l - k ) = O .  Then the argu- 
ment of Bessel function is 

For electrons with energy of about 1 keV, at wavelength A = 1 mu and 1E( = 
106v cm-‘ one obtains the value 2,- 1. As for the parameter l e , l . \ A l / m , ,  it is equal 

The appearance of the factor J i ( Z )  leads to the next effect. The elastic-scattering 
cross-section of electrons can be equal to zero at some scattering angles. These angles 
correspond to zeros of the Bessel function and may be verified by experimental 
measurements. 

to 3 x 

4. Conclusions 

The presence of an external wave results in important changes of interaction between 
the quantum particles. These corrections are analogous to the corresponding changes 
arising in classical acoustics and electrodynamics. 
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